@DuETA: Traffic Congestion Propagation Pattern Modeling via Efficient Graph Learning for ETA Prediction at Baidu Maps
[[Attachments]]
核心贡献
-
新颖性:通过 route-aware graph transformer 捕捉拥堵敏感图中长距离相关性,建模拥堵传播模式
-
The design of DuETA is driven by the novel ideas that directly capture the long-distance correlations through a congestion-sensitive graph, and that model traffic congestion propagation patterns via a route-aware graph transformer.
ls-type:: annotation
hl-page:: 2
hl-color:: yellow -
捕捉任意两个( 距离很远,但是在路况状态上很相关的)segment 之间的交互
- These designs enable DuETA to capture the interactions between any two road segment pairs that are spatially distant but highly correlated with traffic conditions.
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
- These designs enable DuETA to capture the interactions between any two road segment pairs that are spatially distant but highly correlated with traffic conditions.
-
-
通过学习交通拥堵传播模式可以有效提高 ETA 预测效果
- traffic congestion propagation patterns
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
- traffic congestion propagation patterns
核心问题
-
业务需求
-
预测的未来路况状态和真实状态不一致会导致 ETA 误差传播 we observed that a propagation of ETA errors arises from the sharp inconsistency between the predicted traffic condition in the future and ground truth.
ls-type:: annotation
hl-page:: 2
hl-color:: green -
建模 traffic congestion propagation patter
-
Traffic congestion propagation pattern modeling is challenging, and it requires accounting for impact regions over time and cumulative effect of delay variations over time caused by traffic events on the road network.
ls-type:: annotation
hl-page:: 1
hl-color:: red -
当前交通拥堵路段会影响路网上相邻道路的通行能力 As illustrated in it, the impact regions and cumulative delays over time caused by traffic congestion (the road segments in red) would inevitably affect all the interdependent segments on the road network.
ls-type:: annotation
hl-page:: 2
hl-color:: green-
用户请求 ETA 时,只有 3-hop 拥堵,但是由于拥堵传播,等用户到达 target 时,2-hop 拥堵,部分y1-hop 缓行
-
之前使用 [[STGNN]] 类方法建模直接相邻的路段 existing studies have applied spatial-temporal graph neural networks (STGNNs)[7 , 8 , 21 , 34, 35 , 38 ] to model traffic conditions
ls-type:: annotation
hl-page:: 2
hl-color:: blue
存在两个问题-
没有直接建模路网上不相邻 segment 的远距离相关性,网络传播过程中会有信息损失 The long-distance correlations of indirectly connected road segments are not explicitly modeled, which inevitably suffer from information loss during the multi-step message passing.
ls-type:: annotation
hl-page:: 2
hl-color:: blue -
由于 STGCNN 方法计算的复杂度,大部分时候补数很少。两个距离较远的 segment 的路况状态特征不能很好传递。 Traffic conditions are not sufficiently transmitted between two road segments that are spatially distant, because they typically execute only a few steps of message passing (one step in most cases), due to the computational complexity of STGNNs.
ls-type:: annotation
hl-page:: 2
hl-color:: blue
-
-
[:span]
ls-type:: annotation
hl-page:: 2
hl-color:: green
-
-
-
-
面临挑战
-
ETA 任务需要建模 contextual and predictive factors, such as spatial-temporal interaction, driving behavior, and traffic congestion propagation inference
ls-type:: annotation
hl-page:: 1
hl-color:: green -
路网中新 segment 和 未知区域 we plan to investigate the transferability of our model to deal with unseen road segments or regions.
ls-type:: annotation
hl-page:: 9
hl-color:: yellow -
路线旁边 poi 的影响 Second, given the observation that the travel times of some routes have a considerable correlation with the POIs distributed along the roads.
ls-type:: annotation
hl-page:: 9
hl-color:: yellow-
特定地点特定时间
-
poi 密集区域对 eta 预测影响 To address this issue, we plan to utilize the POI retrieval system [5, 11, 13] as an auxiliary tool to forecast which POIs would be densely populated and how extensively they would affect the ETA prediction.
ls-type:: annotation
hl-page:: 9
hl-color:: yellow -
TODO 待找 poi 相关
-
MetaLearned Spatial-Temporal POI Auto-Completion for the Search Engine at Baidu Maps.
-
Personalized Prefix Embedding for POI Auto-Completion in the Search Engine of Baidu Maps
-
HGAMN: Heterogeneous Graph Attention Matching Network for Multilingual POI Retrieval at Baidu Maps
-
-
-
相关工作
-
ETA 任务方法
-
segment-based methods
-
computationally efficient and scalable
ls-type:: annotation
hl-page:: 9
hl-color:: blue -
do not account for the information of the travel route
ls-type:: annotation
hl-page:: 9
hl-color:: blue
-
-
end-to-end methods
- 之间方法对 拥堵传播建模不够 most existing methods are inefficient for modeling the traffic congestion propagation patterns along the route.
ls-type:: annotation
hl-page:: 9
hl-color:: blue
- 之间方法对 拥堵传播建模不够 most existing methods are inefficient for modeling the traffic congestion propagation patterns along the route.
-
-
STGCNN [[Traffic Flow Forecasting]]
-
提升 GNN 层数感受野增加太多 increasing the depth of a GNN often means exponential expansion of the neighbor scope
ls-type:: annotation
hl-page:: 9
hl-color:: blue -
子图 properly extracted subgraph
ls-type:: annotation
hl-page:: 9
hl-color:: blue
-
-
[[@ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps]] 建模时空关系
-
[[@SSML: Self-Supervised Meta-Learner for En Route Travel Time Estimation at Baidu Maps]] 建模驾驶员行为
解决方法
-
traffic conditions 是动态特征
-
过去 1 小时路况特征,每 5 分钟一个分桶,共 12 个 he traffic conditions of the past one hour are collected as features, which are divided into 12 time slots (5 minutes per time slot)
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
median speed, max speed, min speed, mean speed, and record counts as features
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
-
-
Congestion-sensitive Graph
-
we construct a congestion-sensitive graph based on the correlations of traffic patterns.
ls-type:: annotation
hl-page:: 2
hl-color:: yellow -
对于某一个 link 找一阶相邻 link 以及高阶相邻link(可能和当前 link 的路况状态有关系)
- we take advantage of the first-order neighbor links, as well as the high-order neighbor links whose traffic patterns are highly correlated to that of link 𝑙
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
- we take advantage of the first-order neighbor links, as well as the high-order neighbor links whose traffic patterns are highly correlated to that of link 𝑙
-
First-order Neighbors
ls-type:: annotation
hl-page:: 3
hl-color:: yellow-
[[ConSTGAT]] 不同相邻 link 对于当前 link 的影响
- 当前 link 的路况状态可能受下游影响大于上游 the traffic congestion is more likely to propagate from downstream links to upstream links.
ls-type:: annotation
hl-page:: 3
hl-color:: blue
- 当前 link 的路况状态可能受下游影响大于上游 the traffic congestion is more likely to propagate from downstream links to upstream links.
-
具体过程
-
定义多种 link 之间关系,并在建图中考虑这些关系 define multiple types of link relations and incorporate these relations into the construction of the congestion-sensitive graph
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
用 attention 分别处理各种关系捕捉影响 use attention mechanism separately for each relation to capture the impact of neighbor links,
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
用 edge 描述两个 link 之间的关系,一共有 5 种类型
-
[:span]
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
An edge describes the relation between two links
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
2 是上游 link
-
3 是下游 link
-
剩余三种 link 不在路线中,但是这些 link 的路况状态可能影响目标 link(车辆阻塞路口)
-
-
-
-
High-order Neighbors
ls-type:: annotation
hl-page:: 3
hl-color:: yellow-
间接连接 link 也很重要 the long-distance associations between indirectly connected links are also crucial for ETA prediction
ls-type:: annotation
hl-page:: 3
hl-color:: yellow -
如何从高阶邻居采样?
-
link 从 historical route 从取 2-hop 到 5-hop 的邻居 link
-
计算 link 和邻居 link 的 Pearson correlation
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
- 取 link 过去 2 小时,每 5 分钟的平均通过时间序列 和
-
累加同一个 link pair 在不同 route 上的相关系数得到
-
每个 link 取相关系数 top5 的邻居 link
-
-
连接 link 和 high-order neighbor links high-order edge is defined as an edge that connects a link and one of its high-order neighbor links.
ls-type:: annotation
hl-page:: 4
hl-color:: yellow -
[:span]
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
-
-
-
[[Graph Transformer]] Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
-
多头学习 edge 的权重 t adopts the multi-head attention mechanism [ 23] to learn edge weights.
ls-type:: annotation
hl-page:: 4
hl-color:: yellow-
对于每个 edge 计算 attention score
-
计算 link i 的表示
-
-
resnet 解决 [[GNN]] 的 oversmoothing 问题 t addresses the oversmoothing problem in vanilla GNNs by residual connections.
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
-
-
route-aware graph transformer
- [:span]
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
- [:span]
tags:: #[[Model Architecture]] #[[Graph Transformer]]
+ 重新构建的图$\mathcal{G}^{C S}=\left(\mathcal{L},\left.\left\{\mathcal{E}_r\right\}\right|_{r=1} ^6\right)$有六种类型的边,拆分成六张子图,每一张子图用一个 transformer
+ $\mathbf{h}_i=\mathbf{x}_i+\frac{1}{6 C} \sum_{r=1}^6 \sum_{c=1}^C \sum_{j \in \mathcal{N}_r(i)} \alpha_{c, i, j}^{(r)} \mathbf{v}_{c, j}^{(r)}$
+ 之前的特征 transformer 无法区分一个 link 是否在路线上,无法生成不同的表示
+ the graph transformer is unable to identify whether a link belongs to a given route or not
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ 5a 中路线不同,但是 a 通过 transformer 学习到表示可能相同
+ [:span]
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ route-aware structural encoding
+ position encoding
+ 与当前 link 的最近距离
+ encode the order information of a link.
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ 控制控制依赖这条 link 路况的程度 be regarded as a gate to control the degree of dependency of the traffic condition when a user requests the ETA.
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ route identifier
+ 表示当前 link 是否在路线上
+ Integration
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ a 1-D convolution layer (Conv1D) with a window size of 3
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ MLP+ReLU 预估每条 link 的 travel time,累加得到整个行程的 eta
+ $\left[\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_m\right]=\operatorname{MLP}\left(\operatorname{Conv1D}\left(\left[\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_m\right]\right)\right)$
+ [\[\[Multi-Task Learning\]\]](/post/logseq/Multi-Task%20Learning.html) 优化 link 级别和路线级别 eta Multi-task learning is adopted to optimize the model parameters from both the link-level and the route-level.
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ link-level loss function [[Huber Loss]]
+ $L_{l i n k}\left(\hat{y}_i, y_i\right)= \begin{cases}\frac{1}{2}\left(\hat{y}_i-y_i\right)^2, & \left|\hat{y}_i-y_i\right|<\delta, \\ \delta\left(\left|\hat{y}_i-y_i\right|-\frac{1}{\delta}\right), & \text { otherwise }\end{cases}$
+ route-level loss function
+ $L_{\text {route }}(\hat{y}, y)=\frac{|\hat{y}-y|}{y}$
+ 最终 loss
+ $L=\frac{1}{n} \sum_i^n\left(\frac{1}{m^{(i)}} \sum_{j=1}^{m^{(i)}} L_{\text {link }}\left(\hat{y}_j^{(i)}, y_j^{(i)}\right)+L_{\text {route }}\left(\hat{y}^{(i)}, y^{(i)}\right)\right)$
实验结论
-
实验数据
-
行程 link 数和 didi 差不多
-
2021.10.10-2021.11.20,5周训练,1周测试
-
-
指标
- mae rmse mape
-
Baseline
-
AVG 请求时刻路况速度
-
STANN
-
STGNN、attention+LSTM
-
只考虑相邻 link
-
-
[[DCRNN]]
-
GCN 处理 spatial info
-
LSTM 处理 temporal info
-
-
DeepTravel
- bidirectional LSTM
-
[[ConSTGAT]]
-
DuETA
-
the embedding size and the hidden size of DuETA to be 32
ls-type:: annotation
hl-page:: 6
hl-color:: green -
attention heads 𝐶 is set to be 8
ls-type:: annotation
hl-page:: 6
hl-color:: green -
Adam
-
3e-5
-
-
-
结果
-
DeepTravel 和 ConSTGAT
-
End-to-end methods are more effective than the segment-based methods
ls-type:: annotation
hl-page:: 6
hl-color:: yellow -
the correlations of spatial and temporal information are jointly modeled.
ls-type:: annotation
hl-page:: 6
hl-color:: yellow
-
-
DuETA
-
对远距离拥堵更加敏感 sensitive to long-distance traffic congestion,
ls-type:: annotation
hl-page:: 6
hl-color:: yellow -
处理交通事件带来的影响 On the other hand, the cumulative effect of delay variations over time caused by traffic events on the road network can be alleviated by the high efficiency of traffic congestion pattern modeling.
ls-type:: annotation
hl-page:: 6
hl-color:: yellow
-
-
[:span]
ls-type:: annotation
hl-page:: 6
hl-color:: yellow
-
-
Ablation Studies
ls-type:: annotation
hl-page:: 7
hl-color:: yellow-
主要组件对比
-
removing both components hurts performance significantly in all three cities.
ls-type:: annotation
hl-page:: 7
hl-color:: yellow -
[:span]
ls-type:: annotation
hl-page:: 6
hl-color:: yellow
-
-
-
route identifier 效果 To obtain an understanding of the effect of the route identifier, we visualize the distributions of the attention weights in Figure 7.
ls-type:: annotation
hl-page:: 7
hl-color:: yellow-
w/o 组 Off route 的 attention weight 比 Complete 组大,加上这个模块模型能更关注路线上的 link
- enables DuETA to pay more attention to the links that are in the travel routes.
ls-type:: annotation
hl-page:: 7
hl-color:: yellow
- enables DuETA to pay more attention to the links that are in the travel routes.
-
[:span]
ls-type:: annotation
hl-page:: 7
hl-color:: yellow
-
-
congestion-sensitive graph
ls-type:: annotation
hl-page:: 7
hl-color:: yellow-
存在部分远处 link 相关性比附近 link 强 he average Pearson correlation coefficients of our selected high-order neighbors is much higher than those of the second-order and third-order neighbors
ls-type:: annotation
hl-page:: 7
hl-color:: yellow -
[:span]
ls-type:: annotation
hl-page:: 7
hl-color:: yellow -
远处拥堵 case 提升效果大 examine the relative improvements of high-order neighbors in cases of traffic congestion2 and normal traffic.
ls-type:: annotation
hl-page:: 7
hl-color:: yellow-
[:span]
ls-type:: annotation
hl-page:: 8
hl-color:: yellow
-
-
-
Practical Applicability
ls-type:: annotation
hl-page:: 8
hl-color:: yellow-
P 发生拥堵,dueta 能预测未来路线上会堵
-
[:span]
ls-type:: annotation
hl-page:: 8
hl-color:: yellow
-
-
Online Evaluation
ls-type:: annotation
hl-page:: 8
hl-color:: yellow-
2022.4.12-2022.4.18
-
全部、长短单、平峰和高峰
-
在线 RMSE 高 averaged RMSE scores in the online evaluation of DuETA are higher than those in the offline evaluation
ls-type:: annotation
hl-page:: 8
hl-color:: green- 数据噪音大
-
[:span]
ls-type:: annotation
hl-page:: 9
hl-color:: yellow
-
读后总结
- 只考虑下游关系,tcn 之类的考虑上游真的有用吗
@DuETA: Traffic Congestion Propagation Pattern Modeling via Efficient Graph Learning for ETA Prediction at Baidu Maps