损失函数 MSE $${L(y, F(x))=\frac{1}{2}(y_i - f(x_i))^2}$$
通过调整 $${F(x_1), F(x_2), …, F(x_n)}$$ 最小化 $${J=\sum_i L(y_i, F(x_i))}$$
将视为 $${F(x_1), F(x_2), …, F(x_n)}$$ 数字,$${F(x_i)}$$ 当成是参数,并求导
∂F(xi)∂J=∂F(xi)∂∑iL(yi,F(xi))=∂F(xi)∂L(yi,F(xi))=F(xi)−yi
残差等于负梯度 $${y_i-F(x_i)=-\frac{\partial J}{\partial F(x_i)}}$$
Ft+1(xi)=Ft(xi)+h(xi)=F(xi)+yi−F(xi)=Ft(xi)−1∂F(xi)∂J
θt=θt−1+αL′(θt−1)