varθ[θ]=ED[varθ[θ∣D]]+varD[Eθ[θ∣D]]
左转根据方差定义拆开
- varθ[θ]=Eθ[θ2]−Eθ2[θ]
要证明 ED[varθ[θ∣D]]+varD[Eθ[θ∣D]]=Eθ[θ2]−Eθ2[θ]
-
左边第一项
- ED[varθ[θ∣D]]=∫varθ[θ∣D]p(D)dD=∫(Eθ[θ2∣D]−Eθ2[θ∣D])p(D)dD=∫Eθ[θ2∣D]p(D)dD−∫Eθ2[θ∣D]p(D)dD=∬θ2p(θ∣D)dθp(D)dD−ED[Eθ2[θ∣D]]=∫θ2p(θ)dθ−ED[Eθ2[θ∣D]]=Eθ[θ2]−ED[Eθ2[θ∣D]]
-
左边第二项
- varD[Eθ[θ∣D]]=ED[Eθ2[θ∣D]]−ED2[Eθ[θ∣D]]=ED[Eθ2[θ∣D]]−Eθ2[θ]
-
两项相加
- ED[varθ[θ∣D]]+varD[Eθ[θ∣D]]=Eθ[θ2]−Eθ2[θ]