TFT Interpretability Use Cases

以往基于 attention 进行神经网络解释的方法,侧重于用注意力权重对特定样本的解释。当前方法聚焦如何汇总整个数据集中的模式 #card

  • In contrast to other examples of attention-based interpretability [25, 12, 7] which zoom in on interesting but instance-specific examples, our methods focus on ways to aggregate the patterns across the entire dataset – extracting generalizable insights about temporal dynamics.
    ls-type:: annotation
    hl-page:: 17
    hl-color:: red

检查每个变量对预测的重要性 Analyzing Variable Importance
ls-type:: annotation
hl-page:: 17
hl-color:: yellow
[[Feature Importance]] #card

  • 通过分析特征在 [[Variable Selection Networks]] 中的权重大小 (同时考虑 10th,50th,90th 分位数)

  • 结果

    • Static Covariates 可以区分不同物品的特征权重大

      • the largest weights are attributed to variables which uniquely identify different entities (i.e. item number and store number).
        ls-type:: annotation
        hl-page:: 18
        hl-color:: yellow

      • [:span]
        ls-type:: annotation
        hl-page:: 18
        hl-color:: yellow

    • Past Inputs 目标(log sales)是关键,预测是对过去观察结果的外推

      • past values of the target (i.e. log sales) are critical as expected, as forecasts are extrapolations of past observations
        ls-type:: annotation
        hl-page:: 18
        hl-color:: yellow

      • [:span]
        ls-type:: annotation
        hl-page:: 18
        hl-color:: yellow

    • Future Inputs 促销和公共假日比较重要

      • [:span]
        ls-type:: annotation
        hl-page:: 18
        hl-color:: yellow
  • 识别相似的持续模式 identify similar persistent patterns
    ls-type:: annotation
    hl-page:: 19
    hl-color:: red

    • id:: 64400143-1db4-4724-96fb-b0dcf203664a

可视化持续时序模式 Visualizing Persistent Temporal Patterns
ls-type:: annotation
hl-page:: 20
hl-color:: yellow
#card

  • 把不同分位数损失下的自注意力层权重(或均值)绘制出来。

  • 结论

    • 前三个数据集上,自注意力层的权重值都表现出了于数据特征相符的周期性

识别重大事件 Identifying Regimes & Significant Events
ls-type:: annotation
hl-page:: 20
hl-color:: yellow
#card

  • 用注意力的相异度(距离)来判断是否有重大事情发生

  • regime-switching behavior
    ls-type:: annotation
    hl-page:: 20
    hl-color:: red
    [[regime switching model]]

    • 随着回报特征(波动性)被观察到在不同的制度之间突然变化 with returns characteristics – such as volatility – being observed to change abruptly between regime
      ls-type:: annotation
      hl-page:: 20
      hl-color:: green

    • 识别这样的转变为寻找显著事件提供洞见 identifying such regime changes provides strong insights into the underlying problem which is useful for identification of the significant events.
      ls-type:: annotation
      hl-page:: 20
      hl-color:: yellow

  • 结论

    • 波动性特征大的时候,注意力的相异度的值也特别大。

Temporal Fusion Transformer的可解释性 - 知乎 (zhihu.com)

  • [[@“Why Should I Trust You?”: Explaining the Predictions of Any Classifier]] 2016 年 KDD #card

    • LIME Local Interpretable Model-Agnostic Explanations 提供一种与模型无关的方法,使用可解释的模型和可解释的特征,局部达到和复杂模型相似的效果。
  • [[SHAP]] 从博弈论角度考虑,特征如何影响原始模型的预测值。

[[TFT 关键实验]]

作者

Ryen Xiang

发布于

2024-10-05

更新于

2025-03-15

许可协议


网络回响

评论