TFT Interpretability Use Cases
以往基于 attention 进行神经网络解释的方法,侧重于用注意力权重对特定样本的解释。当前方法聚焦如何汇总整个数据集中的模式 #card
- In contrast to other examples of attention-based interpretability [25, 12, 7] which zoom in on interesting but instance-specific examples, our methods focus on ways to aggregate the patterns across the entire dataset – extracting generalizable insights about temporal dynamics.
ls-type:: annotation
hl-page:: 17
hl-color:: red
检查每个变量对预测的重要性 Analyzing Variable Importance
ls-type:: annotation
hl-page:: 17
hl-color:: yellow
[[Feature Importance]] #card
-
通过分析特征在 [[Variable Selection Networks]] 中的权重大小 (同时考虑 10th,50th,90th 分位数)
-
结果
-
Static Covariates 可以区分不同物品的特征权重大
-
the largest weights are attributed to variables which uniquely identify different entities (i.e. item number and store number).
ls-type:: annotation
hl-page:: 18
hl-color:: yellow -
[:span]
ls-type:: annotation
hl-page:: 18
hl-color:: yellow
-
-
Past Inputs 目标(log sales)是关键,预测是对过去观察结果的外推
-
past values of the target (i.e. log sales) are critical as expected, as forecasts are extrapolations of past observations
ls-type:: annotation
hl-page:: 18
hl-color:: yellow -
[:span]
ls-type:: annotation
hl-page:: 18
hl-color:: yellow
-
-
Future Inputs 促销和公共假日比较重要
- [:span]
ls-type:: annotation
hl-page:: 18
hl-color:: yellow
- [:span]
-
-
识别相似的持续模式 identify similar persistent patterns
ls-type:: annotation
hl-page:: 19
hl-color:: red- id:: 64400143-1db4-4724-96fb-b0dcf203664a
可视化持续时序模式 Visualizing Persistent Temporal Patterns
ls-type:: annotation
hl-page:: 20
hl-color:: yellow
#card
-
把不同分位数损失下的自注意力层权重(或均值)绘制出来。
-
结论
- 前三个数据集上,自注意力层的权重值都表现出了于数据特征相符的周期性
识别重大事件 Identifying Regimes & Significant Events
ls-type:: annotation
hl-page:: 20
hl-color:: yellow
#card
-
用注意力的相异度(距离)来判断是否有重大事情发生
-
regime-switching behavior
ls-type:: annotation
hl-page:: 20
hl-color:: red
[[regime switching model]]-
随着回报特征(波动性)被观察到在不同的制度之间突然变化 with returns characteristics – such as volatility – being observed to change abruptly between regime
ls-type:: annotation
hl-page:: 20
hl-color:: green -
识别这样的转变为寻找显著事件提供洞见 identifying such regime changes provides strong insights into the underlying problem which is useful for identification of the significant events.
ls-type:: annotation
hl-page:: 20
hl-color:: yellow
-
-
结论
- 波动性特征大的时候,注意力的相异度的值也特别大。
Temporal Fusion Transformer的可解释性 - 知乎 (zhihu.com)
-
[[@“Why Should I Trust You?”: Explaining the Predictions of Any Classifier]] 2016 年 KDD #card
- LIME Local Interpretable Model-Agnostic Explanations 提供一种与模型无关的方法,使用可解释的模型和可解释的特征,局部达到和复杂模型相似的效果。
-
[[SHAP]] 从博弈论角度考虑,特征如何影响原始模型的预测值。
[[TFT 关键实验]]
TFT Interpretability Use Cases
https://blog.xiang578.com/post/logseq/TFT Interpretability Use Cases.html