二项分布方差推导

var(m)=E[m2]E2[m]=m=0Nm2N!(Nm)!m!μm(1μ)NmN2μ2=m=1Nm2μN!(Nm)!m!μm1(1μ)NmN2μ2=m=1NmμN!(Nm)!(m1)!μm1(1μ)NmN2μ2\begin{aligned} \operatorname{var}(m) & =\mathrm{E}\left[m^2\right]-\mathrm{E}^2[m] \\ & =\sum_{m=0}^N \frac{m^2 N !}{(N-m) ! m !} \mu^m(1-\mu)^{N-m}-N^2 \mu^2 \\ & =\sum_{m=1}^N \frac{m^2 \mu N !}{(N-m) ! m !} \mu^{m-1}(1-\mu)^{N-m}-N^2 \mu^2 \\ & =\sum_{m=1}^N \frac{m \mu N !}{(N-m) !(m-1) !} \mu^{m-1}(1-\mu)^{N-m}-N^2 \mu^2\end{aligned}

u=m1,T=N1u=m-1, T=N-1 代入上面

  • var(m)=u=0T(u+1)μ(T+1)!(Tu)!u!μu(1μ)TuN2μ2=(T+1)μu=0TuT!(Tu)!u!μu(1μ)Tu+(T+1)μu=0TT!(Tu)!u!μu(1μ)TuN2μ2=(T+1)Tμ2+(T+1)μN2μ2=N(N1)μ2+NμN2μ2=NμNμ2=Nμ(1μ)\begin{aligned} \operatorname{var}(m) & =\sum_{u=0}^T \frac{(u+1) \mu(T+1) !}{(T-u) ! u !} \mu^u(1-\mu)^{T-u}-N^2 \mu^2 \\ & =(T+1) \mu \sum_{u=0}^T u \frac{T !}{(T-u) ! u !} \mu^u(1-\mu)^{T-u}+(T+1) \mu \sum_{u=0}^T \frac{T !}{(T-u) ! u !} \mu^u(1-\mu)^{T-u}-N^2 \mu^2 \\ & =(T+1) T \mu^2+(T+1) \mu-N^2 \mu^2 \\ & =N(N-1) \mu^2+N \mu-N^2 \mu^2 \\ & =N \mu-N \mu^2 \\ & =N \mu(1-\mu)\end{aligned}
作者

Ryen Xiang

发布于

2024-10-05

更新于

2024-10-05

许可协议


网络回响

评论