2024-10-05 2024-10-05 随手记 2 分钟读完 (大约300个字) 0次访问多项分布p(x∣μ)=∏k=1Kμkxkp(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{k=1}^K \mu_k^{x_k}p(x∣μ)=∏k=1Kμkxk xkx_kxk 中一项为 1,其余为 0 期望 E[x∣μ]=∑xp(x∣μ)x=(μ1,…,μM)T=μ\mathbb{E}[\mathbf{x} \mid \boldsymbol{\mu}]=\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu}) \mathbf{x}=\left(\mu_1, \ldots, \mu_M\right)^{\mathrm{T}}=\boldsymbol{\mu}E[x∣μ]=∑xp(x∣μ)x=(μ1,…,μM)T=μ 似然函数 p(D∣μ)=∏n=1N∏k=1Kμkxnk=∏k=1Kμk(∑nxnk)=∏k=1Kμkmkp(\mathcal{D} \mid \boldsymbol{\mu})=\prod_{n=1}^N \prod_{k=1}^K \mu_k^{x_{n k}}=\prod_{k=1}^K \mu_k^{\left(\sum_n x_{n k}\right)}=\prod_{k=1}^K \mu_k^{m_k}p(D∣μ)=∏n=1N∏k=1Kμkxnk=∏k=1Kμk(∑nxnk)=∏k=1Kμkmk mk=∑nxnkm_k=\sum_n x_{n k}mk=∑nxnk 极大似然估计 对 p 求对数似然,约束项是 ∑xp(x∣μ)=∑k=1Kμk=1\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu})=\sum_{k=1}^K \mu_k=1∑xp(x∣μ)=∑k=1Kμk=1 ,再通过 [[Lagrange Multiplier]] 求解 L=∑k=1Kmklnμk+λ(∑k=1Kμk−1)L=\sum_{k=1}^K m_k \ln \mu_k+\lambda\left(\sum_{k=1}^K \mu_k-1\right)L=∑k=1Kmklnμk+λ(∑k=1Kμk−1) 对 L 求关于 μk\mu_kμk 的导数,并令其为 0 。得到 μk=mkN\mu_k=\frac{m_k}{N}μk=Nmk ∂L∂μk=mkμk+λ0=mkμk+λ−mkλ=μk−1λ∑kmk=∑kμk−Nλ=1λ=−N\begin{aligned} \frac{\partial L}{\partial \mu_k} & =\frac{m_k}{\mu_k}+\lambda \\ 0 & =\frac{m_k}{\mu_k}+\lambda \\ -\frac{m_k}{\lambda} & =\mu_k \\ -\frac{1}{\lambda} \sum_k m_k & =\sum_k \mu_k \\ -\frac{N}{\lambda} & =1 \\ \lambda & =-N\end{aligned}∂μk∂L0−λmk−λ1k∑mk−λNλ=μkmk+λ=μkmk+λ=μk=k∑μk=1=−N 重复进行 N 次多项分布实验,得到分布 Mult(m1,m2,…,mK∣μ,N)=(Nm1m2…mK)∏k=1Kμkmk\operatorname{Mult}\left(m_1, m_2, \ldots, m_K \mid \boldsymbol{\mu}, N\right)=\left(\begin{array}{c}N \\ m_1 m_2 \ldots m_K\end{array}\right) \prod_{k=1}^K \mu_k^{m_k}Mult(m1,m2,…,mK∣μ,N)=(Nm1m2…mK)∏k=1Kμkmk (Nm1m2…mK)=N!m1!m2!…mK!\left(\begin{array}{c}N \\ m_1 m_2 \ldots m_K\end{array}\right)=\frac{N !}{m_{1} ! m_{2} ! \ldots m_{K} !}(Nm1m2…mK)=m1!m2!…mK!N!. ∑k=1Kmk=N\sum_{k=1}^K m_k=N∑k=1Kmk=N 多项分布https://blog.xiang578.com/post/logseq/多项分布.html作者Ryen Xiang发布于2024-10-05更新于2024-10-05许可协议
2025-04-20@Towards Personalized and Semantic Retrieval: An End-to-End Solution for E-commerce Search via Embedding Learning随手记