多项分布

p(xμ)=k=1Kμkxkp(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{k=1}^K \mu_k^{x_k}

  • xkx_k 中一项为 1,其余为 0

期望

  • E[xμ]=xp(xμ)x=(μ1,,μM)T=μ\mathbb{E}[\mathbf{x} \mid \boldsymbol{\mu}]=\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu}) \mathbf{x}=\left(\mu_1, \ldots, \mu_M\right)^{\mathrm{T}}=\boldsymbol{\mu}

似然函数

  • p(Dμ)=n=1Nk=1Kμkxnk=k=1Kμk(nxnk)=k=1Kμkmkp(\mathcal{D} \mid \boldsymbol{\mu})=\prod_{n=1}^N \prod_{k=1}^K \mu_k^{x_{n k}}=\prod_{k=1}^K \mu_k^{\left(\sum_n x_{n k}\right)}=\prod_{k=1}^K \mu_k^{m_k}

    • mk=nxnkm_k=\sum_n x_{n k}

极大似然估计

  • 对 p 求对数似然,约束项是 xp(xμ)=k=1Kμk=1\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu})=\sum_{k=1}^K \mu_k=1 ,再通过 [[Lagrange Multiplier]] 求解

    • L=k=1Kmklnμk+λ(k=1Kμk1)L=\sum_{k=1}^K m_k \ln \mu_k+\lambda\left(\sum_{k=1}^K \mu_k-1\right)

    • 对 L 求关于 μk\mu_k 的导数,并令其为 0 。得到 μk=mkN\mu_k=\frac{m_k}{N}

      • Lμk=mkμk+λ0=mkμk+λmkλ=μk1λkmk=kμkNλ=1λ=N\begin{aligned} \frac{\partial L}{\partial \mu_k} & =\frac{m_k}{\mu_k}+\lambda \\ 0 & =\frac{m_k}{\mu_k}+\lambda \\ -\frac{m_k}{\lambda} & =\mu_k \\ -\frac{1}{\lambda} \sum_k m_k & =\sum_k \mu_k \\ -\frac{N}{\lambda} & =1 \\ \lambda & =-N\end{aligned}

重复进行 N 次多项分布实验,得到分布

  • Mult(m1,m2,,mKμ,N)=(Nm1m2mK)k=1Kμkmk\operatorname{Mult}\left(m_1, m_2, \ldots, m_K \mid \boldsymbol{\mu}, N\right)=\left(\begin{array}{c}N \\ m_1 m_2 \ldots m_K\end{array}\right) \prod_{k=1}^K \mu_k^{m_k}

    • (Nm1m2mK)=N!m1!m2!mK!\left(\begin{array}{c}N \\ m_1 m_2 \ldots m_K\end{array}\right)=\frac{N !}{m_{1} ! m_{2} ! \ldots m_{K} !}.

    • k=1Kmk=N\sum_{k=1}^K m_k=N

作者

Ryen Xiang

发布于

2024-10-05

更新于

2024-10-05

许可协议


网络回响

评论