随风@时间序列分析
时间序列分析的核心是挖掘该序列中的自相关性
特征
-
趋势
-
季节变化
-
相关性 serial correlation
-
自相关性是时间序列可以预测未来的前提
-
波动聚类 volatility clustering
-
-
随机噪声
-
从时间序列的波动中挖掘信息
-
核心
-
数据序列本身是隐藏着规律的,不可预测的部分很小
-
分解方法要合适,周期判断准确
-
-
[[Python/package]]
statsmodels.tsa.seasonal
中seasonal_decompose
-
trend
趋势序列 -
seasonal
季节序列 -
resid
残差序列
-
-
[[ADF 检验]]
-
graphics.tsa.plot_acf
-
[[PACF]]
graphics.tsa.plot_pacf
-
相关图可以帮助判断模型是否合适
-
自相关性
-
原始时间序列与模型拟合的时间序列之间的残差应该近似于随机噪声
-
标准的随机噪声的自相关满足
- 任意不为 0 的间隔,随机噪声的自相关均为 0
-
-
[[传统时间序列预测]]
[[Linear Regression]] 预测
-
残差散点图
-
[[R2 score]]评分指标
-
-
fi预测,yi样本
-
SSres 残差平方和
-
SStot 真实值与其平均值的残差的平方和
-
将拟合模型与数据均值相比较
-
R2=0 模型拟合和均值一样
-
R2 越接近于 1 说明模型效果越好
-
R2 < 0 说明拟合模型还不如均值模型
-
-
线性与非线性模型应用于同一时间序列
-
[[ARIMA]] 从线性自相关角度进行建模
-
单时间序列 LSTM 从非线性自相关角度进行建模
-
多元 LR 从线性互相关角度进行建模
-
多元 LSTM 从非线性互相关角度进行建模