概率论
[[条件概率]] :-> 在某一时间已发生的条件下,另一事件发生的概率。
[[联合概率]] :-> 两个或多个事件同时发生的概率
[[边缘概率]] Marginal Probability :-> 通过将联合概率对无关变量求和(或积分)得到单个事件的概率。
常用概率分布
-
[[Bernoulli Distribution]] 一次伯努利实验结果
-
[[Binomial Distribution]] n 次伯努利实验结果
[[大数定律]]
-
[[Bayesian]]
-
贝叶斯公式
-
[[先验概率]]、[[后验概率]]、[[似然函数]]
-
先验分布、后验分布
概率和统计的区别?
-
概率 :<-> 已知模型和参数,求数据。
-
统计 :<-> 已知数据,推模型和参数。
[[概率质量函数]] 描述 :-> 一个离散概率分布 (变量的取值范围是个离散集合)
[[概率密度函数]] 描述 :-> 一个连续概率分布(变量的取值范围是个连续集合) -
对应 x 的概率取值 f(x)
-
对 f(x) 求积分得到 [[累积分布函数]]
[[参数估计]] :-> 找到解释已有数据的参数
-
频率学派观点是 :<-> 存在唯一的真值
- 极大似然估计 [[MLE]] :<-> 在给定样本的情况下,使得样本发生概率最大的参数估计方法
-
贝叶斯学派观点是 :<-> 是一个随机变量
- 最大后验概率估计[[MAP]]
-
贝叶斯估计 [[BNN]]