滴滴和华南理工在 2022 年 KDD 上发表的 ETA 论文,从多个视角解释轨迹,引入 Hierarchical Self-Attention Network 方法进行建模,最终在滴滴内部数据集上获得指标提升。
滴滴和华南理工在 2022 年 KDD 上发表的 ETA 论文,从多个视角解释轨迹,引入 Hierarchical Self-Attention Network 方法进行建模,最终在滴滴内部数据集上获得指标提升。
[[Attachments]]
关键信息
相关工作
traffic flow prediction [[Traffic Flow Forecasting]]
ls-type:: annotation
hl-page:: 2
hl-color:: green
+ 图学习通常会受到不相关的空间邻域区域的负面影响,尤其当区域变大,这种影响会导致误差传播 graph representation learning generally suffers from the negative impact from irrelevant spatial neighboring regions, resulting in error propagation especially when the involved area grows larger
ls-type:: annotation
hl-page:: 2
hl-color:: green
+ 图建模被限制在狭窄的邻近区域,在开发大规模城市系统中存在不足 graph modeling is limited to process only narrow neighboring regions and falls short on developing large-scale urban-wise systems
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
[[ConSTGAT]]
travel time estimation
trajectory recovery and inference
DeepTTE
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
raw GPS sequences geo-convolutional network LSTM
[[WDR]] wide-deep-recurrent network
ConSTGAT 和 CompactETA 图建模
DeepGTT
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
deep generative model for learning the distribution of travel time
[[HetETA]] learns the representation of spatio-temporal information using a multi-relational network;
ls-type:: annotation
hl-page:: 3
hl-color:: blue
[[TTPNet]] 张量分解和图embedding从历史轨迹中学习速度和表示 extracts the travel speed and representation of road network from historical trajectories based on tensor decomposition and graph embedding.
ls-type:: annotation
hl-page:: 3
hl-color:: blue
核心贡献
利用三个视图之间的层次关系对道路底层结构进行建模 HierETA exploits the hierarchical relationship among the three views to portray the underlying road structure
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
分层自自注意力网络根据 segment, link, intersection 之间自然关系进行高效组织 proposed hierarchical self-attention network organizes the segment-, link-, and intersection-views efficiently according to their natural relationships.
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
自适应自注意力网络合并,以在多视图表示框架中共同利用全局和局部模式进行时空依赖建模。 adaptive self-attention network to jointly leverage the global and local patterns for spatio-temporal dependency modeling within the multi-view representation framework.
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
hierarchy-aware attention decoder
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
利用从不同粒度的信息上学习到上下文特征预估最终 ETA
核心问题
传统 ETA 方法采用分治策略,将一个轨迹拆分成多个小段,然后累加每个小段的预测结果得到整体 ETA traditional ETA algorithms mainly employ the divide-and-conquer strategy by representing a trajectory as a segment sequence and then summing up the local predictions
ls-type:: annotation
hl-page:: 1
hl-color:: blue
ls-type:: annotation
hl-page:: 1
hl-color:: blue
+ 累积误差
多视图下建模困难
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
+ 不使用 link 建模,现有的研究很困难对同一个 link 中的多个段之间的一致性建模 However, without explicitly modeling the link-view characteristics, existing studies can hardly model the coherent consistency across segments within the same links.
ls-type:: annotation
hl-page:: 2
hl-color:: red
+ segment 和 intersection 的属性是不一致的, 很难用同一个网络去建模,大部分选择忽视路口或简化建模 On the other hand
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
+ ETA 会受到路口等待影响
什么是 trajectory
三个角度 link、Intersection、Segment
segement
ls-type:: annotation
hl-page:: 1
hl-color:: green
+ link
+ 提供静态道路属性,pavement type,道路宽度、道路等级 preserve static road characteristics, such as pavement type, road width and road functional level
ls-type:: annotation
hl-page:: 1
hl-color:: green
+ intersection
+ 等待时间、交通灯数量、历史车流量 valued information such as the waiting time, the number of traffic lights, and the historical traffic volume
ls-type:: annotation
hl-page:: 1
hl-color:: green
+ link 和 intersection 粗粒度表示轨迹属性,link 可以进一步拆分成多个小段,segment 可以细粒度对空间依赖性进行建模 the link- and intersection-views characterize the trajectory attributes from a coarse perspective; a link can be further decomposed into several segments, and hence the segment-view representation models the spatial dependencies at a fine granularity
ls-type:: annotation
hl-page:: 2
hl-color:: yellow
+ 猜测基于作者的假设,两个Intersection 之间的整条路被称之为 Link
+ [:span]
ls-type:: annotation
hl-page:: 2
hl-color:: green
HierETA Hierarchical Self-Attention Network for Estimating the Time of Arrival
tags:: [[Model Architecture]] [[ETA]]
Attribute Feature Extractor
ls-type:: annotation
hl-page:: 3
hl-color:: yellow
连续特征 z-score
类别特征 embedding
全局特征共享
Hierarchical Self-Attention Network for Multi-View Trajectory Representation
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
segment encoder
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
+ a segment encoder is developed to capture the spatio-temporal dependencies at a fine granularity
ls-type:: annotation
hl-page:: 1
hl-color:: yellow
+ 利用 BiLSTM 处理 $[x^s_j|x_r]$,正向和反向结果 concat 成 segment 的表示 $H^s_j$
+ 同一个 link 内 segement 记作 $H^s=\left[H_1^s, \ldots, H_n^s\right] \in \mathbb{R}^{n \times d_s}$
+ 计算出 j-th segment 和 link 内其他 segment 的全局相似度 $G P_j=\frac{Q_j K^T}{\sqrt{d}_s}$
+ a local semantic pattern
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
局部相似度
+ $L P_j(k)= \begin{cases}G P_j(k), & |j-k| \leq \omega \\ -\infty, & \text { otherwise }\end{cases}$
+ 取 j 相邻 $\omega$ 个 segment 计算相似度
+ 捕获局部 segment 的依赖,加强局部的拥堵转移
+ 用门控机制平衡全局和局部attention结果 a gating mechanism
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
+ $F_j^s=\left(1-z_j\right) \odot \operatorname{Att}\left(G P_j\right)+z_j \odot \operatorname{Att}\left(L P_j\right)$
+ 控制参数怎么学 $z_j=\sigma\left(W_h H_j^s+W_g A t t\left(G P_j\right)+W_l A t t\left(L P_j\right)+b_z\right)$
+ ResNet + LN
+ 所有 link 的 encoder 参数共享以及并行计算
+ n adaptive self-attention module is designed to boost performance
ls-type:: annotation
hl-page:: 1
hl-color:: yellow
+ Joint Link-Intersection Encoder.
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
+ 道路属性
+ o characterize the natural trajectory structure consisting of alternatively arranged links and intersections
ls-type:: annotation
hl-page:: 1
hl-color:: yellow
+ 为什么要设计这个模块?
+ segment-view 无法对同一个 link 内 segment 共享的一致性进行建模
+ t fails to model the consistency shared within the same link
ls-type:: annotation
hl-page:: 4
hl-color:: red
+ 粗粒度表示 coarse-scale representation
ls-type:: annotation
hl-page:: 4
hl-color:: red
+ link 和 intersections 交替出现 as links and intersections appear alternatively
ls-type:: annotation
hl-page:: 4
hl-color:: yellow
+ link 表示:$x_i^l=\sum_{j=1}^n \gamma_{i j} h_{i j}^s$
+ link 内的 segment 表示是 $\left\{h_{i j}^s\right\}_{j=1}^n$
+ 加权融合 segment 得到 link 表示,权重计算方法 [\[\[Attention\]\]](/post/logseq/Attention.html) $\gamma_{i j}=\operatorname{softmax}_j\left(W_\gamma h_{i j}^s+b_\gamma\right)$
+ 得到 link 和 intersections 的表示后,分别用编码 employ two BiLSTMs to respectively encode the links and intersections
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
得到 ${H^l_i}$ 和 ${H^c_i}$,concat 在一起得到 $\hat{H}_i^l=\left[H_i^l \mid H_i^c\right]$
+ 上一步得到向量经过 the joint link-intersection encoder also includes a self-attention layer, a residual connection and a layer normalization
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
得到 $\left{h_i^l\right}_{i=1}^m$
+ 去除这个 encoder 中的 local pattern
ls-type:: annotation
hl-page:: 5
hl-color:: red
,因为相邻 link 之间的交通影响更加弱和稀疏,避免过拟合
+ 总结
+ segement-view 捕捉局部交通信息 segment-view context feature that captures the local traffic conditions
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ link-intersection context 表达道路属性 joint link-intersection context feature that preserves the common road attributes
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
Hierarchy-Aware Attention Decoder
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
层次感知注意力解码器
ls-type:: annotation
hl-page:: 1
hl-color:: yellow
+ sub-route 对于最后的 eta 贡献是不一样的(拥堵路口和道路应该给予更多关注)
+ travel time estimation is closely related to the critical components
ls-type:: annotation
hl-page:: 5
hl-color:: green
+ ETA $\mathcal{R}=(1-\lambda) \sum_{i=1}^m \sum_{j=1}^n \alpha_{i j} h_{i j}^s+\lambda \sum_{i=1}^m \beta_i h_i^l$
+ segment 的表示以及 link-intersection 的表示
+ alpha 和 beta 都是注意力权重
+ 设计注意力引导机制,利用 link-view 之间的关系调整 segment-view 之间的 attention attention guidance that adopts the link-view consistency to further adjust the segment-view attention
ls-type:: annotation
hl-page:: 5
hl-color:: red
+ 先计算 link 的注意力 $\beta_i=\underset{i}{\operatorname{softmax}}\left(f^l\left(h_i^l, x^r\right)\right)$
+ $f^l\left(h_i^l, x^r\right)=v^T \tanh \left(w_1 h_i^l+w_2 x^r+b\right)$
+ xr 是外部影响因素
+ 根据 link 注意力计算 segment 之间注意力 $\alpha_{i j}=\underset{(i, j)}{\operatorname{softmax}}\left(\beta_i f^s\left(h_{i j}^s, x^r\right)\right)$
+ 考虑 segment 之间的重要性,如果不考虑 link 之间的重要性, separately processing each segment without considering the link-view correlation is problematic as it lacks the feedback from the link-view consistency.
ls-type:: annotation
hl-page:: 5
hl-color:: red
+ 改方法可以自适应选择不同表示粒度中最相关的特征 we can adaptively select the most relevant features from different representation granularities.
ls-type:: annotation
hl-page:: 5
hl-color:: yellow
+ 可以实现是几个 link 权重大,还是几个 segment 权重大
+ $\mathcal{L}(\Theta)=\frac{1}{N} \sum_{k=1}^N\left|Y_k-\hat{Y}_k\right|$
EXPERIMENTS
ls-type:: annotation
hl-page:: 5
hl-color:: green
20 天训练,1 天评估,预测 7 天
数据分布 probability density functions (PDFs) and cumulative distribution functions (CDFs)
ls-type:: annotation
hl-page:: 5
hl-color:: green
ls-type:: annotation
hl-page:: 6
hl-color:: yellow
We repeat each experiment for five times except the statistics-based approach Route-ETA and report the mean and the standard deviation of different runs.
ls-type:: annotation
hl-page:: 6
hl-color:: green
训练 5 次取平均
指标 mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and satisfaction rate (SR), similar to existing approaches [ 23 ]. Specifically, SR refers to the fraction of trips with error rates less than 10% and a higher SR indicates better performance and customer satisfaction
ls-type:: annotation
hl-page:: 6
hl-color:: green
实验结果
ls-type:: annotation
hl-page:: 7
hl-color:: yellow
+ [[ConSTGAT]] ConstGAT considers the graph structures of the road network to exploit the joint relations of spatio-temporal information.
ls-type:: annotation
hl-page:: 7
hl-color:: blue
+ HierETA 更具有可解释性,对潜在道路网络结构进行建模
+ 误差分析:所有距离分桶中指标都提升了,长单提升更加明显。
+ 层次化建模效果好 That is, interpreting the trajectory from multiple views effectively portrays the hierarchical structure of road network and eases the error propagation for estimating the travel time.
ls-type:: annotation
hl-page:: 7
hl-color:: green
+ [:span]
ls-type:: annotation
hl-page:: 7
hl-color:: green
模型分析
ls-type:: annotation
hl-page:: 8
hl-color:: green
+ 局部窗口效果好
+ segment 之间距离越远,之间的关联性越弱 he correlation between adjacent segments slightly decreases while the modeling uncertainty increases.
ls-type:: annotation
hl-page:: 8
hl-color:: green
+ [:span]
ls-type:: annotation
hl-page:: 8
hl-color:: yellow
+ segment 和 link 的权重
+ 只考虑其中一个指标差
+ [[Ablation Study]]
+ 有无 local 或 global 特征
+ 建模细粒度交通信息 The local attention in encoder is removed to verify the effectiveness for modeling the semantic traffic condition.
ls-type:: annotation
hl-page:: 8
hl-color:: green
+ 提取结构化交通模式 verify the necessity of extracting the structural traffic pattern.
ls-type:: annotation
hl-page:: 8
hl-color:: green
+ 有无 guide
+ 无引导信息
+ 有无 路况信息
+ 有无 层次化结构 removing the joint link-intersection encoder
ls-type:: annotation
hl-page:: 8
hl-color:: green
,没有这个效果显著下降
+ 从 1s 就是变化很大来说,这些网络结构都挺重要的
+ HierETA performs better than both variants that eliminating local and global attentions, which is contributed to the introduction of the global structural and local semantic patterns.
ls-type:: annotation
hl-page:: 8
hl-color:: yellow
+ [:span]
ls-type:: annotation
hl-page:: 8
hl-color:: green
(WDR) Learning to Estimate the Travel Time
严重申明:本篇文章所有信息从论文、网络等公开渠道中获得,不会透露滴滴地图 ETA 任何实现方法。
这篇论文是滴滴时空数据组 2018 年在 KDD 上发表的关于在 ETA 领域应用深度学习的文章,里面提到模型和技巧大家都应该耳熟能详,最大亮点是工业界的创新。
简单介绍一下背景:ETA 是 Estimate Travel Time 的缩写,中文大概能翻译成到达时间估计。这个问题描述是:在某一个时刻,估计从 A 点到 B 点需要的时间。对于滴滴,关注的是司机开车把乘客从起点送到终点需要的时间。抽象出来 ETA 就是一个时间空间信息相关的回归问题。CTR 中常用的方法都可以在这里面尝试。
对于这个问题:文章首先提到一个最通用的方法 Route ETA:即在获得 A 点到 B 点路线的情况下,计算路线中每一段路的行驶时间,并且预估路口的等待时间。最终 ETA 由全部时间相加得到。这种方法实现起来很简单,也能拿到一些收益。但是仔细思考一下,没有考虑未来道路的通行状态变化情况以及路线的拓扑关系。针对这些问题,文章中提到滴滴内部也有利用 GBDT 或 FM 的方法解决 ETA 问题,不过没有仔细写实现的方法,我也不好继续分析下去。
对于 ETA 问题来说,工业界和学术界常用的指标是 MAPE(mean absolute percentage error),${y_i}$ 是司机实际从 A 点到 B 点花费的时间,${f(x_i)}$ 是 ETA 模型估计出来的时间。得到计算公式如下:
$${min_f \sum_{i=1}^{N}\frac{|y_i - f(x_i)|}{y_i}}$$
多说一句,如果使用 GBDT 模型实现 ETA 时,这个损失函数的推导有点困难,全网也没有看见几个人推导过。
这个公式主要考虑预估时间偏差大小对用户感知体验的影响,目前我们更加关心极端 badcase 对用户的影响。
模型包含 3 个部分:

上面模型中使用的特征分类:
包括两部分:离线评估和在线评估。
离线评估中取滴滴 2017 年北京前6个月的订单数据,分成两类 pickup (平台给司机分单后,司机开车去接乘客的过程)和 trip (司机接到乘客并前往目的地的过程)。具体数据集划分如下。

离线使用 MAPE 来评价模型。在线评估时,为了更好的与用户体验挂钩,采用多个指标来衡量 ETA 的效果。包括:
离线结果如下图所示,说来汗颜 PTTE 和 TEMP 是什么算法我都不知道…… WD-MLP 指的是将 WDR 中的 R 部分换成 MLP 。最终 WDR 较 route-ETA 有巨大提升,而且 LSTM 引入的序列信息也在 pikcup 上提升了 0.75%。文章的最后还提出来,LSTM 也可以换成是 Attention,这样替换有什么优点和缺点留给大家思考。

在线实验结果如下图所示,滴滴 ETA MAPE 明显小于 com1、com2、com3 ,这三家地图公司具体是哪三家,大家也能猜到吧。


从上面的图中可以看出 ETA 服务工程架构主要包括三个部分:

The deep modules with attention achieve better results than WDR on MAE and RMSE metrics, which means attention mechanism can help to extract features and sole the long-range dependencies in long sequence.
从上面简单的介绍来看,ETA 可以使用 CTR 和 NLP 领域的很多技术,大有可为。最后,滴滴 ETA 团队持续招人中(社招、校招、日常实习等),感兴趣者快快和我联系。
说点题外话 你为什么从滴滴出行离职? - 知乎 中提到一点:
8.同年大跃进,在滴滴中高层的眼里,没有BAT。滴滴单量超淘宝指日可待,GAFA才是滴滴要赶超的对象。百度系,LinkedIn系,学院派,uber帮,联想系,MBB就算了,据说连藤校都混成了一个小圈子。。一个项目A team ,B team。一个ETA,投入了多少人力自相残杀?MAPE做到0%又如何?用户体验就爆表了吗?长期留存就高枕无忧了吗?风流总被雨打风吹去,滴滴是二龙山,三虫聚首?是不是正确的事情不知道,反正跟着公司大势所趋,升D10保平安。