GCN
核心思想
-
GCN 本质用来提取拓扑图的空间特征
-
利用『边的信息』对『节点信息』进行『聚合』从而生成新的『节点表示』。
Non Euclidean Structure 拓扑图
为什么需要图卷积神经网络?
-
CNN 研究对象是具备 Euclidean Domains 的数据,特征是他们具有规则的空间结构,可以用一维或二维矩阵来表示。
-
CNN 的平移不变性在非矩阵结构数据不适用
-
平移不变性
- 输入怎么变形输出都不变
-
平移可变性
-
目标检测,物体从图片左侧移到右侧,坐标发生改变。
-
R-FCN,网络变深平移可变性变差。物体在输入上的小偏移,经过多层 pooling 后在小的 feature map 上感知不到。
-
-
将 [[CNN]] 扩展到图上,如何在图上实现卷积的各个特性?
-
权重共享
-
局部性
-
第一代 GCN 没有 local 性质,卷积核的运算矩阵在所有位置上都有非 0 元素
-
第二代的运算矩阵在和当前顶点邻接的位置都是非 0 元素
-
-
多尺度
为什么需要 [[Laplacian matrix]]
-
对称矩阵,可以进行特征分解
-
拉普拉斯矩阵只在中心顶点和一阶相连的顶点上有非 0 元素
-
由于卷积在傅里叶域的计算相对简单,为了在graph上做傅里叶变换,需要找到graph的连续的正交基对应于傅里叶变换的基,因此要使用拉普拉斯矩阵的特征向量。
- 为什么 Laplacian 矩阵的特征向量可以作为[[傅里叶变换]]的基?
如何把卷积推广到 Graph 上
- [[Laplacian matrix]]分解 可以写成
[[Spectral Networks and Deep Locally Connected Networks on Graphs]] 图上扩展卷积
-
基于空域的卷积构建
Spatial Construction
-
基于谱域的卷积构建
Spectral Construction
-
第一代 GCN
-
-
Spectral graph theory 借助于图的拉普拉斯矩阵的特征值和特征向量来研究图的性质
-
[[Convolutional neural networks on graphs with fast localized spectral filtering]]
-
第二代 GCN
-
把 设计成
-
-
-
最终
[[Semi-Supervised Classification with Graph Convolutional Networks]] 利用 Chebyshev 多项式作为卷积核
GCN 缺点
-
训练时需要整个图的结构信息,因此是 transductive 的(训练阶段与预测阶段都是基于同样的图结构)。无法处理 inductive 任务(动态图问题,训练在子图上进行,测试阶段需要处理未知的顶点)
-
不能处理有向图,不容易实现分配不通的学习权重给不通的 neighbor
- 拉普拉斯举证的特征分解需要拉普拉斯矩阵是对称矩阵
[[Ref]]
-
图卷积网络 GCN Graph Convolutional Network(谱域GCN)的理解和详细推导-持续更新_无知人生,记录点滴-CSDN博客 这个很详细,有 renormaliztion 具体的例子
-
-
Do we need deep graph neural networks? | by Michael Bronstein | Towards Data Science
-
图神经网络很难做深?
-
过度平滑:经过多个卷积层,结点特征趋向于收敛到相同或相似的向量
-
过度压缩:多层之后,相关的信息压缩到一个结点上,造成瓶颈。
-
-