AUUC
[[UPlift Model]] 目标是学习个体潜在弹性 $\tau=Y(1)-Y(0)$
,没有标签。
计算过程
数据集 $D=\left(Y_i^{\text {obs }}, W_i\right.$, score $\left._i\right)$
W 是样本所在的组,1 为实验组,0 为空白组
Y_obs 是观测到的样本响应信号
socre 是样本的 uplift 值
按 socre 从大到小排序,第 k 个的 uplift 值
$u(k)=\frac{R^T(D, k)}{N^T(D, k)}-\frac{R^C(D, k)}{N^C(D, k)}$
$R^T(D, k)=\sum Y_i^{o b s} \mathbb{I}\left(W_i=1\right)$ 排在前 k 个样本中属于实验组的人的响应之和
$R^C(D, k)=\sum Y_i^{o b s} \mathbb{I}\left(W_i=0\right)$ 空白组的人的响应之和
$N^T(D, k)=\sum \mathbb{I}\left(W_i=1\right)$ 前 k 实验组人数
$N^C(D, k)=\sum \mathbb{I}\left(W_i=0\right)$ 前 k 空白组人数
避免实验组和对照组用户数量差别较大导致指标不可靠
全量人群的 [[Average Treatment Effect]]
含义:前 k 个样本中实验组平均产生的价值 - 前 k 个样本中空白组平均产生的价值
计算 $A U U C=\frac{S}{n * u(n)}$
$S=\sum_{k=1}^n(u(k) * k)$
- $(u(k) * k)$ 代表前 k 个人产生的 uplift 值
Ref
实现 [[causalml]]
lift.plotx=k, y=u(k)gain.plotx=k, y= k*u(k)
-
画 [[auuc/code]]
auuc_score['random']值含义是什么?无规律排序下,实验组相对于控制组的期望增值
TODO 在大多数情况下,使用归一化的auuc_score(normalize=True)函数计算得到的random值应该接近0.5,gain.plot()画出的random应该是一条直线。原因是在多次随机排序下,期望增值应该是稳步上升的。
假如random值不是0.5,图像不是直线时,这意味着什么?
导致不是0.5的背后原因可能有很多,可以先分析下是不是以下三种情况。
1.实验组和空白组不是平衡的,两者人群不是同质的,这时算AUUC没有很大的意义了,应该调平人群后再计算。
2.样本的y值即响应信号的离群点比较多。
3.样本量太小,无法支撑实验组和对照组的匹配。
除此之外,还有一种情况是random值为-0.5,这时整体的ATE为负数,所有样本均为负弹,这时候uplift值不再是“收益”,更像是“花销”。
